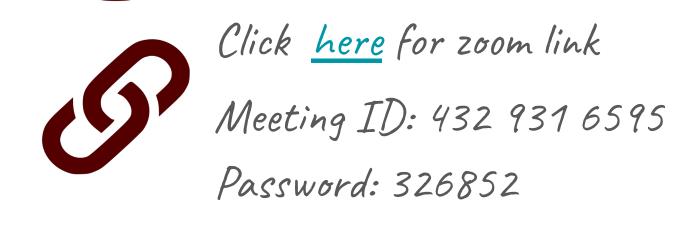


Vijay Shenoy


Indian Institute of Science

Arboreal Quantum Phases

The past decade has witnessed spectacular progress in the classification of gapped phases of systems with many quantum degrees of freedom. The long-wavelength description of such phases typically uses quantum field theory with fields placed on a manifold. Motivated by recent advances in quantum technologies that enable the creation of synthetic systems, we define and explore physics in arenas that do not tessellate a manifold, and hence do not yield to conventional quantum field theories on a manifold. The simplest such arenas are made from tree graphs. After introducing these arenas, I will discuss the physics of free fermions on such arenas and demonstrate several new features in the nature of phase transitions. I will then turn to more exotic topologically ordered (long-range entangled phases) in these systems. Highlight results include the demonstration that even the simplest gauge theory in these arenas is fractonic, and a result on the classification of such phases.

Vijay B. Shenoy obtained his Ph.D. from Brown University in 1998. After a short stint at the Indian Institute of Technology Kanpur, he has been at the Indian Institute of Science, Bangalore. He works in condensed matter theory.

For more information visit acmc.bilkent.edu.tr